Коллекторный двигатель постоянного тока
Преобразование электрического тока в механическое движение (вращение) осуществляется электромеханическим преобразователем энергии — электрической машиной. Принцип работы, которой, основан на явлениях электромагнитной индукции и силы Ампера, действующей на проводник с током, движущийся в магнитном поле.
Электрические машины делятся по видам преобразования энергии:
- Генератор — преобразует механическую энергию в электрическую и тепло;
- Электрический двигатель — преобразует электрическую энергию в механическую работу и тепло;
- Электромеханический преобразователь (трансформатор) — преобразуют электрическую энергию одного вида в электрическую энергию другого вида, отличающуюся по напряжению, частоте и другим параметрам;
- Электромагнитный тормоз — механическая и электрическая энергии преобразуются в тепло.
В большинстве случаев электрическая машина состоит из двух элементов рис. 1;
- Ротор (якорь) — вращающаяся часть, состоит из обмотки якоря и коллекторного узла;
- Статор — неподвижная часть, состоит из источника магнитного поля. Постоянный магнит или электромагнит.

Рисунок 1. Основные узлы двигателя.
Между ротором и статором присутствует воздушный зазор, который служит их разделителем.
Электрические машины делятся на:
Коллекторные | Бесколлекторные |
Постоянного тока | Синхронные |
Универсальные | Асинхронные |
Коллекторный двигатель постоянного тока
Коллекторный электродвигатель — электрическая машина, в которой датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.
Щеточно-коллекторный узел — обеспечивает электрическое соединение цепи ротора с цепями, расположенными в неподвижной части двигателя. Состоит из коллектора (набора контактов, расположенных на роторе) и щёток (скользящих контактов, расположенных вне ротора и прижатых к коллектору), рис. 2.

Рисунок 2. Коллекторно-щеточный узел
Обычно в маломощных моторах всего два полюса обмотки возбуждения (одна пара) и трехзубцовый якорь. Три зуба это минимум для запуска из любого положения, но чем больше зубцов тем более эффективно используется обмотка, меньше токи и более плавный момент, т.к сила является проекцией на угол, а активный участок обмотки проворачивается на меньший угол.
В коллекторном электродвигателе щёточно-коллекторный узел одновременно выполняет две функции:
- является датчиком углового положения ротора (датчик угла) со скользящими контактами;
- переключателем направления тока со скользящими контактами в обмотках ротора в зависимости от углового положения ротора.
Щеточно-коллекторный узел является сам ненадежным элементом электрических машин, поскольку скользящие контакты интенсивно изнашиваются от трения.
Электродвигатели характеризуют два основных параметра — это скорость вращения вала (ротора) и момент вращения, развиваемый на валу. В общем плане оба этих параметра зависят от напряжения, подаваемого на двигатель и тока в его обмотках.
Принцип работы коллекторного двигателя постоянного тока.

Рисунок 3. Принцип работы коллекторного двигателя постоянного тока.
Прямоугольная рамка (ротор), свободно вращающаяся вокруг своей оси, помещена между постоянными магнитами. Если через рамку пропустить ток, то на обе ее стороны начнут действовать электродинамические силы. Действие этих сил, приводит рамку в движение. Рамка будет двигаться до тех пор, пока не достигнет положения, когда щетки попадут на диэлектрический зазор между пластинами коллектора. Рамка по инерции проскочит это положение, направление тока в рамке поменяется на противоположное, но силы действующие на рамку не поменяют своего направления, и она продолжит свое вращение в том-же направлении.
Разновидности коллекторных двигателей постоянного тока:
Малой мощности (единицы Ватт), рабочее напряжение 3-9 В:
- трёхполюсной ротор на подшипниках скольжения;
- коллекторный узел из двух щёток — медных пластин;
- двухполюсной статор из постоянных магнитов.
Более мощные (десятки Ватт), рабочее напряжение 12–24 В:
- многополюсный ротор на подшипниках качения;
- коллекторный узел из двух или четырёх графитовых щёток;
- четырёхполюсный статор из постоянных магнитов.
Высокой мощности (сотни Ватт):
- Четырех полюсный статор из электромагнитов.
Подключение обмотки статора
Обмотки статора могут подключаться несколькими способами:
- Последовательно с ротором (так называемое последовательное возбуждение, см. рис. 4
Преимущество: большой максимальный момент;
Недостаток: большие обороты холостого хода, способные повредить двигатель.
Рисунок 4. Последовательное соединение.
- Параллельно с ротором (параллельное возбуждение), см. рис. 5
Преимущество: большая стабильность оборотов при изменении нагрузки;
Недостаток: меньший максимальный момент.
Рисунок 5. Параллельное соединение
- Часть обмоток параллельно с ротором, часть последовательно (смешанное возбуждение), см. рис. 6.
До некоторой степени совмещает достоинства предыдущих типов.
Рисунок 6. Смешанное возбуждение
- Отдельным источником питания (независимое возбуждение), см. рис. 7.
Рисунок 7. Независимое возбуждение
Общие достоинства коллекторных двигателей постоянного тока — простота изготовления, эксплуатации и ремонта, достаточно большой ресурс.
К недостаткам можно отнести то, что эффективные конструкции (с большим КПД и малой массой) таких двигателей являются низкомоментыми и быстроходными (сотни и тысячи оборотов в минуту), поэтому для большинства приводов (кроме вентиляторов и насосов) необходимы редукторы.
Управление коллекторными двигателями постоянного тока.
Для работы двигателя достаточно подать на него напряжения питания постоянного тока. Проблемы начинают возникать, когда появляется необходимость в регулировке скорости вращения вала такого двигателя. Нужно учитывать, что при вращении на малых скоростях, крутящий момент на валу будет то же мал. Если требуются низкие скорости вращения, то применяются редуктора.
В коллекторных двигателях постоянного тока ярко выражен пусковой ток, который превышает номинальный в несколько раз (10-40 раз). Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки, (8).

Рисунок 8
Ioя — ток обмотки якоря;
U — напряжение питающей сети;
∑r — сопротивление обмоток якоря;
Как только двигатель начнет движение, то возникает противоЭДС — Епр. Обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость, формула 9.

Рисунок 9
Снижение пускового тока можно добится уменьшением напряжения питания или повышением сопротивления обмотки якоря. Для повышения сопротивления обмотки якоря применяется ввод дополнительного сопротивления Rд, формула (10).

Рисунок 10
Таким образом, можно добиться величины пускового тока, в нужном диапазоне, безопасном для двигателя. Добавочное сопротивление может быть как в виде реостата, так и в виде нескольких резисторов. Это нужно для того, чтобы в процессе запуска двигателя, менять сопротивление в якорной цепи.
Епр — противоэдс, зависит от конструкции двигателя, и оборотов, формула 11.

Рисунок 11
Ce — одна из конструктивных констант. Они зависят от конструкции двигателя, числа полюсов, количества витков, толщин зазоров между якорем и статором. Нам она не особо нужна, при желании ее можно вычислить экспериментально. Главное, что она константа и на форму кривых не влияет.
Ф — поток возбуждения. т.е. сила магнитного поля статора. В моторах, где она задается постоянным магнитом это тоже константа, а в двигателях с обмоткой возбуждения, этот параметр можно менять.
n — обороты якоря.
Зависимость момента M от тока и потока, формула 12.

Рисунок 12
См — конструктивная константа.
Вот тут стоит обратить внимание, что зависимость момента от тока совершенно прямая. Т.е. просто замеряя ток, при неизменном потоке возбуждения, мы можем совершенно точно узнать величину момента.
Импульсный способ управления.
Следующий метод управления, как более перспективный, основан на применении широтно-импульсной модуляции (ШИМ). Он, действительно, самый распространенный. К двигателю подводятся импульсы неизменного по амплитуде напряжения управления U у.ном, в результате чего его работа состоит из чередующихся периодов разгона и торможения, рис 13. Если эти периоды малы по сравнению с полным временем разгона и остановки ротора, то угловая скорость ротора не успевает к концу каждого периода достигать установившихся значений и установится некоторая средняя угловая скорость. Значение при неизменных моменте нагрузки и напряжении возбуждения однозначно определяется относительной продолжительностью импульсов ε

Рисунок 13
tи — длительность импульса;
Ти — период.
С увеличением относительной продолжительности импульсов угловая скорость ротора растет (ωср>ωср).В период паузы tп ротор обязательно должен тормозиться. Если это условие не будет выполняться, то угловая скорость ротора при любом значении ω будет непрерывно увеличиваться, пока не достигнет значения угловой скорости х.х., так как во время импульса угловая скорость будет возрастать, а во время паузы — оставаться практически неизменной.
С ростом частоты управляющих импульсов амплитуда колебаний скорости уменьшается; среднее значение угловой скорости остается при этом неизменным.