Принцип работы коллекторного двигателя постоянного тока
Простые и надежные, коллекторные двигатели постоянного тока обеспечивают высокий момент на небольших скоростях и являются хорошей базой для создания приводов и готовых сервосистем с обратной связью.
Коллекторные двигатели постоянного тока - рабочие лошадки промышленности. Они простые, надежные, экономичные. Эти двигатели обеспечивают хорошую регулировку на малых оборотах и, что более важно, высокий крутящий момент на низких скоростях. В связи с этим, при добавлении закрытого контура обратной связи, они могут успешно использоваться при решении задач управления движением.
Давайте взглянем ближе на базовую теорию коллекторных двигателей постоянного тока. Для более удобного и легкого восприятия статья разбита на две части. В этой первой части рассмотрены базовые законы электродинамики, которые лежат в основе работы коллекторных двигателей постоянного тока.
Простая модель - принцип двигателя постоянного тока
Закон Ампера говорит нам о том, что проводник с током генерирует магнитное поле (B-поле), ориентацию которого можно определить по правилу правой руки: если расположить правую руку так, чтобы большой палец указывал вдоль проводника по направлению тока, и согнуть остальные пальцы, то они будут огибать проводник в направлении линий магнитной поля (см. рис.1).

Рис.1а. Магнитное поле проводника с током.
Если вместо одиночного витка проводника мы используем многовитковую катушку (соленоид), поля, генерируемые витками, складываются в более сильное, равномерно распределённое однородное магнитное поле. Линии этого поля ориентированы практически параллельно центральной оси соленоида. Таким образом работают электромагниты.

Рис. 1б. Магнитное поле соленоида.
В простейшем варианте, поворотные двигатели постоянного тока состоят из неподвижного элемента (статора) и вращающегося элемента (ротора - якоря двигателя постоянного тока). И хотя на практике существует множество вариаций, включая вращающийся статор и неподвижный якорь, для упрощения понимания в данной статье мы будем подразумевать цилиндрический внутренний ротор и внешний статор, генерирующий магнитное поле за счет постоянных магнитов. Мы рассмотрим электродвигатель, приводимый в движение за счет взаимного воздействия полей, генерируемых ротором и статором.
От теории к практике - как создать электродвигатель
Каким образом применить имеющиеся знания к созданию реального двигателя? Давайте начнем с простого примера - двухполюсного коллекторного двигателя постоянного тока. Такой мотор включает в себя ротор (якорь) и статор, сформированным двумя разнополюсными постоянными магнитами. Якорь состоит из свободно вращающейся перекладины (рамки), установленной на центральный стержень, который в свою очередь установлен на подшипниках, прикрепленных к корпусу двигателя. Вместо рассмотренного ранее одиночного витка возьмем проводник и обернем его вокруг якоря несколько раз, чтобы сформировать обмотку с обеих сторон, но в разных направлениях. В результате при подключении проводника к источнику питания две обмотки создадут электромагнитные поля с противоположными полярностями.
Магнит можно рассматривать как собрание дипольных моментов, направленных в одну сторону. Подобная модель применима как к постоянным магнитам, так и электромагнитам. Магнитное поле вызывает усилие, направленное по вектору дипольных моментов соленоида. Другими словами, когда мы помещаем якорь в магнитное поле, индуцированное магнитами статора, это поле создает усилие и генерирует момент, вызывающий вращение якоря относительно своей центральной оси.

Рис.2. Схематичное изображение двухполюсного двигателя постоянного тока.
Приведенная простая модель имеет некоторые проблемы. Хотя сила остается постоянной при условии неизменности силы тока и магнитного поля, момент меняется как функция угла поворота θ. Так как якорь двигателя стремится повернуться таким образом, чтобы выровнять полюса обмотки в соответствии с полюсами статора, значение угла θ и sin(θ) падает, в конечном счете приводя момент к нулю. С практической стороны это означает, что якорь останавливается, когда его полюса выравниваются с полюсами магнитов статора. Имея существеннную массу, якорь может проскользнуть положение идеального выравнивания полюсов, но в этом случае образуется отрицательный момент, который вызовет движение в обратную сторону. Возникнет колебание вокруг положения равновесия, и в конечном итоге остановка.
В любом случае, запомним, что направление силы, возникающей по действием магнитного поля, будет определяться направлением тока. Это означает, что реверсирование направления тока в проводнике вызовет реверс действия силы и позволит магнитному полю опять создать момент. Если мы сможем переключить направление тока в момент, когда виток достигнет перпендикулярного положения, то сразу после того, как он отклонится далее под действием силы инерции мимо перпендикулярного положения, поле статора заставит виток поворачиваться далее, генерируя крутящий момент (рис.2). Таков принцип работы двигателя постоянного тока.
Чтобы заставить работать подобную модель, мы должны найти способ изменять направление тока в проводнике. В случае двигателя постоянного тока мы можем осуществить такое преключение добавив в электрический контур коммутатор (преключатель, или коллекторный узел), который будет переключать направление тока. Такой коммутатор состоит из разомкнутого кольца, закрепленного на оси якоря таким образом, чтобы оно двигалось вместе с осью якоря и соединялось с обмотками двигателя (рис.3). Чтобы подключить коммутатор к источнику питания используются щетки. Фактически эти элементы не являются щетками, это пластины из проводящего материала (в большинстве случаев графитовые, но иногда используются также и золотые или серебряные). Эти пластины закрепляются напротив коммутатора с помощью плоских пружин. При повороте якоря двигателя направление тока изменяется на противоположное через каждые 180°, позволяя двигателю продолжать вращение.

Рис.3. Коллектор двигателя постоянного тока
Во второй части статьи "Коллекторные двигатели постоянного тока - реализация моделей" рассмотрены варианты моделей двигателей - их преимущества и недостатки в зависимости от конструктивных исполнений. В частности, рассмотрены отличия двухполюсного и трехполюсного коллекторных двигателей.